Welcome to Shenzhen Sing Fung Intelligent  Manufacturing Co., Ltd.

E-mail:shaobo@sfi-crf.com

img
搜索
确认
取消
News Center

News Center

Professional plasma plasma high-tech enterprise dedicated to providing manufacturing equipment and process solutions for the electronics industry
News

The performance of the modified catalyst by low temperature plasma treatment on Ni/Al2O3 catalyst for CO2 reforming methane

  • Categories:Industry News
  • Author:Plasma cleaning machine-CRF plasma plasma equipment-plasma surface treatment machine manufacturer-chengfeng intelligent manufacturing
  • Origin:
  • Time of issue:2022-01-12
  • Views:

(Summary description)The performance of the modified catalyst by low temperature plasma treatment on Ni/Al2O3 catalyst for CO2 reforming methane: Low-temperature plasma is a system in a thermodynamically non-equilibrium state and has important applications in the field of catalysts. Plasma treatment has the performance of Ni/Al2O3 catalyst for catalyzing CO2 reforming methane. The catalyst surface after plasma treatment and then roasting has high low-temperature catalytic activity and strong anti-carbon deposition ability. Compared with conventional catalysts, the catalyst is prepared by plasma technology, and the dispersion of metal active species of the catalyst is obviously improved, and the catalyst activity is increased. Low-temperature plasma can be effectively used to directly synthesize ultrafine particle catalysts, improve the dispersion of catalyst active components, catalyst surface treatment, precipitation of active components into the matrix, and synergistic effect of catalysts, etc. The catalyst prepared or treated by low temperature plasma has the advantages of large specific surface area and fast reduction rate, thereby improving the catalytic activity of the catalyst. After the low temperature plasma modification, the structure of the solid base catalyst was changed in a friendly manner, the catalytic activity of the catalyst was effectively improved, and the thiol conversion rate was significantly improved. The morphology and particle size of the modified catalysts changed significantly. Compared with the unmodified catalyst, the treated catalyst has obvious particles, but part of it is still amorphous. Plasma-treated catalyst particles are distinct but non-uniform in particle size. The plasma-treated catalyst particles are elliptical and spherical, with uniform size and good dispersion, large porosity and no agglomeration. After the low temperature plasma modification, the average particle size of the catalyst components was reduced, and the particle dispersion of the catalyst was significantly improved. Activated carbon has the advantages of large adsorption capacity, good chemical stability, large specific surface area and large pores, etc. It can be used to adsorb mercaptans in air and liquid phase, and is a suitable catalyst carrier for desulfanization. The use of low-temperature plasma technology can destroy the original crystal structure of the catalyst and generate more holes to improve the activity of the catalyst. The specific surface area of ​​the low-temperature plasma-modified catalyst increases, and the number of micropores increases. Since it is the micropores that determine the adsorption of thiols, and the adsorption capacity also depends on the micropores, the modification of the low-temperature plasma can make the catalyst more active and the conversion rate of thiols higher. Under the action of plasma, a small amount of H2O and CO2 covered by the basic center of the catalyst are further removed, thereby reducing the possibility of reacting with MgO, and the basic center of the catalyst is exposed and enriched on the surface of the catalyst, which is beneficial to improve the reduction performance of the catalyst and adsorption performance, thereby improving catalyst activity.

The performance of the modified catalyst by low temperature plasma treatment on Ni/Al2O3 catalyst for CO2 reforming methane

(Summary description)The performance of the modified catalyst by low temperature plasma treatment on Ni/Al2O3 catalyst for CO2 reforming methane:
Low-temperature plasma is a system in a thermodynamically non-equilibrium state and has important applications in the field of catalysts. Plasma treatment has the performance of Ni/Al2O3 catalyst for catalyzing CO2 reforming methane. The catalyst surface after plasma treatment and then roasting has high low-temperature catalytic activity and strong anti-carbon deposition ability.
Compared with conventional catalysts, the catalyst is prepared by plasma technology, and the dispersion of metal active species of the catalyst is obviously improved, and the catalyst activity is increased. Low-temperature plasma can be effectively used to directly synthesize ultrafine particle catalysts, improve the dispersion of catalyst active components, catalyst surface treatment, precipitation of active components into the matrix, and synergistic effect of catalysts, etc. The catalyst prepared or treated by low temperature plasma has the advantages of large specific surface area and fast reduction rate, thereby improving the catalytic activity of the catalyst.
After the low temperature plasma modification, the structure of the solid base catalyst was changed in a friendly manner, the catalytic activity of the catalyst was effectively improved, and the thiol conversion rate was significantly improved. The morphology and particle size of the modified catalysts changed significantly. Compared with the unmodified catalyst, the treated catalyst has obvious particles, but part of it is still amorphous. Plasma-treated catalyst particles are distinct but non-uniform in particle size. The plasma-treated catalyst particles are elliptical and spherical, with uniform size and good dispersion, large porosity and no agglomeration. After the low temperature plasma modification, the average particle size of the catalyst components was reduced, and the particle dispersion of the catalyst was significantly improved.
Activated carbon has the advantages of large adsorption capacity, good chemical stability, large specific surface area and large pores, etc. It can be used to adsorb mercaptans in air and liquid phase, and is a suitable catalyst carrier for desulfanization. The use of low-temperature plasma technology can destroy the original crystal structure of the catalyst and generate more holes to improve the activity of the catalyst. The specific surface area of ​​the low-temperature plasma-modified catalyst increases, and the number of micropores increases. Since it is the micropores that determine the adsorption of thiols, and the adsorption capacity also depends on the micropores, the modification of the low-temperature plasma can make the catalyst more active and the conversion rate of thiols higher.
Under the action of plasma, a small amount of H2O and CO2 covered by the basic center of the catalyst are further removed, thereby reducing the possibility of reacting with MgO, and the basic center of the catalyst is exposed and enriched on the surface of the catalyst, which is beneficial to improve the reduction performance of the catalyst and adsorption performance, thereby improving catalyst activity.

  • Categories:Industry News
  • Author:Plasma cleaning machine-CRF plasma plasma equipment-plasma surface treatment machine manufacturer-chengfeng intelligent manufacturing
  • Origin:
  • Time of issue:2022-01-12 18:08
  • Views:
Information

The performance of the modified catalyst by low temperature plasma treatment on Ni/Al2O3 catalyst for CO2 reforming methane:
Low-temperature plasma is a system in a thermodynamically non-equilibrium state and has important applications in the field of catalysts. Plasma treatment has the performance of Ni/Al2O3 catalyst for catalyzing CO2 reforming methane. The catalyst surface after plasma treatment and then roasting has high low-temperature catalytic activity and strong anti-carbon deposition ability.

Compared with conventional catalysts, the catalyst is prepared by plasma technology, and the dispersion of metal active species of the catalyst is obviously improved, and the catalyst activity is increased. Low-temperature plasma can be effectively used to directly synthesize ultrafine particle catalysts, improve the dispersion of catalyst active components, catalyst surface treatment, precipitation of active components into the matrix, and synergistic effect of catalysts, etc. The catalyst prepared or treated by low temperature plasma has the advantages of large specific surface area and fast reduction rate, thereby improving the catalytic activity of the catalyst.
After the low temperature plasma modification, the structure of the solid base catalyst was changed in a friendly manner, the catalytic activity of the catalyst was effectively improved, and the thiol conversion rate was significantly improved. The morphology and particle size of the modified catalysts changed significantly. Compared with the unmodified catalyst, the treated catalyst has obvious particles, but part of it is still amorphous. Plasma-treated catalyst particles are distinct but non-uniform in particle size. The plasma-treated catalyst particles are elliptical and spherical, with uniform size and good dispersion, large porosity and no agglomeration. After the low temperature plasma modification, the average particle size of the catalyst components was reduced, and the particle dispersion of the catalyst was significantly improved.
Activated carbon has the advantages of large adsorption capacity, good chemical stability, large specific surface area and large pores, etc. It can be used to adsorb mercaptans in air and liquid phase, and is a suitable catalyst carrier for desulfanization. The use of low-temperature plasma technology can destroy the original crystal structure of the catalyst and generate more holes to improve the activity of the catalyst. The specific surface area of ​​the low-temperature plasma-modified catalyst increases, and the number of micropores increases. Since it is the micropores that determine the adsorption of thiols, and the adsorption capacity also depends on the micropores, the modification of the low-temperature plasma can make the catalyst more active and the conversion rate of thiols higher.
Under the action of plasma, a small amount of H2O and CO2 covered by the basic center of the catalyst are further removed, thereby reducing the possibility of reacting with MgO, and the basic center of the catalyst is exposed and enriched on the surface of the catalyst, which is beneficial to improve the reduction performance of the catalyst and adsorption performance, thereby improving catalyst activity.

Scan the QR code to read on your phone

Relevant Information

Shenzhen Sing Fung Intelligent  Manufacturing Co., Ltd.

Adhere to quality as the foundation, honesty as the way of business, innovation as the source of development, and service as the pinnacle of value

©Shenzhen Sing Fung Intelligent Manufacturing Co., Ltd. All rights reserved
粤ICP备19006998号
dh

TEL:0755-3367 3020 / 0755-3367 3019

dh

E-mail:sales-sfi@sfi-crf.com

dh

ADD:Mabao Industrial Zone, Huangpu, Baoan District, Shenzhen